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Abstract

Steady state, two-dimensional flows may become unstable under two and three-dimensional disturbances if the flow
parameters exceed some critical values. In many practical situations, determining the parameters at which the flow
becomes unstable is essential. Linear hydrodynamic stability of a laminar flow leads to a generalized eigenvalue problem
(GEVP) where the eigenvalues correspond to the rate of growth of the disturbances and the eigenfunctions to the ampli-
tude of the perturbation. Solving GEVP’s is challenging, because the incompressibility of the liquid gives rise to singular-
ities leading to non-physical eigenvalues at infinity that require substantial care. The high computational cost of solving the
GEVP has probably discouraged the use of linear stability analysis of incompressible flows as a general engineering tool for
design and optimization.

In this work, we propose a new procedure to eliminate the eigenvalues at infinity from the GEVP associated to the lin-
ear stability analysis of incompressible flow. The procedure takes advantage of the structure of the matrices involved and
avoids part of the computational effort of the standard mapping techniques used to compute the spectrum of incompress-
ible flows. As an example, the method is applied in the solution of linear stability analysis of plane Couette flow.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Thorough understanding of viscous flows in many situations requires not only the two-dimensional, steady-
state solution of the governing equations, but also the sensitivity of those flows to small upsets and to episodic
perturbations, i.e. stability analysis. For example, the required stability of a flow that occurs in many manu-
facturing processes gives rise to bounds on some operation parameters.

In many situations, an asymptotic analysis with respect to infinitesimal disturbances is sufficient to predict
the critical flow parameters at which a two-dimensional steady flow becomes unstable. There are many
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examples of such analysis in the literature. Ruschak [8], Christodoulou and Scriven [4], Coyle et al. [5] and
Carvalho and Scriven [3] studied stability analysis of different coating flows. Ramanan and Homsy [7] studied
the linear stability of the flow inside a lid-driven cavity, and Severtson and Aidun [10] analyzed the stability of
stratified liquid layers in inclined channels. Linear stability analysis proceeds in a familiar fashion. One first
considers the linearization of the governing equations about the steady-state flow. The perturbation variables
are described by a linear system of coupled differential equations. The discretization of the system of linear
differential equations that describe the amplitude of the perturbations and its rate of growth usually leads
to a non-Hermitian, generalized eigenvalue problem (GEVP) of the form:
Jc ¼ rMc:
where the eigenvalue r is the growth rate of the disturbances. The matrices J and M are usually referred to as
the jacobian and mass matrices.

To find the solution of the GEVP is a computationally challenging task. The level of discretization
needed to describe the perturbed fields is high, giving rise to large matrices. The large dimension of the
problem rules out the calculation of the full spectrum: usually, only the leading eigenvalues (those with
the largest real part) are calculated. Iterative methods are used to compute the relevant part of the spec-
trum. Moreover, the mass matrix M, which is associated with the transient terms of the governing equations,
is singular because the continuity equation for incompressible flows does not have a time dependent term.
This singularity is responsible for the so-called eigenvalues at infinity, which complicate the numerics
because most iterative methods favor the eigenvalues with the largest modulus, not those with the largest
real part. Ideally, such non-physical eigenvalues at infinity should be eliminated before proceeding to the
numerical eigenproblem.

The most effective techniques to solve GEVP are based on some form of preconditioning and Krylov
subspace projection methods, such as Arnoldi’s and Lanczos methods (see [9]). A simple way to handle
the eigenvalues at infinity is to use the shift-and-invert iteration appropriately, so as to map the eigenvalues
at infinity to zero. Christodoulou and Scriven [4] used approximately exponential preconditioning by
rational transformation for the same purpose. The eigenvalues of the transformed problem are the exponen-
tials of the original eigenvalues, and consequently this transformation maps leading eigenvalues of the ori-
ginal problem to ones of largest modulus, which are favored by the iterative procedures, like Arnoldi’s
algorithm. In the same spirit, for the study of linear stability of large power systems, Ushida and Nagao
[12] use Cayley-type transforms, which convert the eigenvalues at infinity to eigenvalues at zero. All the pro-
posed techniques are computationally expensive and do not eliminate the eigenvalues at infinity from the
problem: the dimension of the transformed eigenproblem is the same as the original one. The eigenvalues
are only mapped to a part of the spectrum of the transformed eigenproblem that will not be favored by the
iterative methods.

In this work, a more careful consideration of how mass and jacobian matrices are constructed indicates the
possibility of eliminating the eigenvalues at infinity. The original generalized eigenproblem (GEVP) is con-
verted into a simpler eigenproblem (EVP) whose dimension is smaller than the original one, so that both prob-
lems have the same finite spectrum, the smaller one having no eigenvalues at infinity. Unlike the condensation
procedure used by Ruschak [8] and Coyle et al. [5] for viscous free surface flows, and by Arora and Sureshku-
mar [1] for viscoelastic flows, the method proposed in this work is not limited to vanishing Reynolds number.
The method does not include a penalty term in the mass conservation equation, as the compressible flow for-
mulation proposed by Sureshkumar [11]. It reduces not only the memory requirement but also the CPU time
needed to compute the leading eigenvalues of incompressible viscous flows.

A stream-function formulation is usually employed in parallel flows and the resulting system of equations
can be written as a fourth-order differential equation, the so-called Orr-Sommerfeld operator, frequently
solved with spectral methods. Here, a more general approach is used. The formulation of the linear equations
that describe the perturbation of a steady-state solution, presented in Section 2, is written in terms of the prim-
itive variables v and p, and then the Galerkin’s finite element method was chosen to discretize the equations.
The procedure to eliminate the eigenvalues at infinity, based on a two-sided Gaussian elimination, in shown in
Section 3. As an example, in Section 4, the method is applied to the solution of the equations related to the
linear stability analysis of plane Couette flow. Conclusions are presented in Section 5.
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2. Linear stability analysis of viscous flow

2.1. Formulation

The velocity v and pressure p fields of two-dimensional, steady state, incompressible flow are governed by
the continuity and momentum equations:
r � v ¼ 0; ð1Þ
Rev � rv ¼ �rp þr � s: ð2Þ
The Reynolds Number Re ” qVL/l characterizes the ratio of inertial to viscous forces; V and L are suitable
characteristic values of velocity and length, q is the liquid density and l, the liquid viscosity. We denote by
s ” $v + ($v)T the viscous stress tensor for Newtonian fluid.

The goal of linear stability analysis is to determine if a two-dimensional, steady flow is stable with respect to
infinitesimal disturbances. The disturbed (velocity and pressure) fields are written as the sum of the base state
and an infinitesimal perturbation:
vðx; tÞ ¼ v0ðxÞ þ �v0ðxÞert; ð3Þ
pðx; tÞ ¼ p0ðxÞ þ �p0ðxÞert: ð4Þ
Here, v0 and p0 are the velocity and pressure fields of the base flow, i.e. the two-dimensional, steady-state
solution, which is known a priori. The fields v 0 and p 0 describe the amplitudes of the perturbation and r is
the growth factor. If the real part RðrÞ is positive, the disturbance grows with time and the flow is unstable.
The velocity v and pressure p of the disturbed flow are governed by the time-dependent Navier–Stokes
system:
r � v ¼ 0; ð5Þ

Re
ov

ot
þ v � rv

� �
¼ �rp þr � ½rvþrvT�; ð6Þ
with the appropriate boundary conditions.
A system of linear differential equations for the perturbed fields is obtained after substituting the perturbed

fields, e.g. Eqs. (3), and (4), onto the transient Navier–Stokes system and neglecting terms of order Oð�2Þ:
r � v0 ¼ 0; ð7Þ

Re½rv0 þ v0 � rv0 þ v0 � rv0� ¼ �rp0 þ r � ½rv0 þ rv0
T�; ð8Þ
The unknowns of the problem are the perturbed fields v 0 and p 0 and the growth factor of the perturbation r.

2.2. Discretization by Galerkin’s method and finite element basis functions

The perturbation fields v 0, p 0 and the rate of growth r may be computed by applying Galerkin’s weighted
residual method to Eqs. (7) and (8). The weighting functions used for the momentum equation /j and conti-
nuity equations vj are piecewise Lagrangian biquadratic and bilinear discontinuous polynomial basis func-
tions, respectively. The weighted residual equations of continuity and each component of the momentum
conservation are
Rj
c ¼

Z
X

ou0h
ox
þ ov0h

oy

� �
vj dX; ð9Þ

Rj
mx ¼ r

Z
X

Reu0h/j dX þ
Z

X
Re u0

ou0h
ox
þ v0

ou0h
oy
þ u0h

ou0

ox
þ v0h

ou0

oy

� �
/j þ �p0h þ 2

ou0h
ox

� �
o/j

ox

þ ou0h
oy
þ ov0h

ox

� �
o/j

oy
dX�

Z
C
½n � ð�p0 þ s0Þ�x/j dC; ð10Þ
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Rj
my ¼ r

Z
X

Re v0h /j dX þ
Z

X
Re u0

ov0h
ox
þ v0

ov0h
oy
þ u0h

ov0

ox
þ v0h

ov0

oy

� �
/j þ �p0h þ 2

ov0h
oy

� �
o/j

oy

þ ou0h
oy
þ ov0h

ox

� �
o/j

ox
dX�

Z
C
½n � ð�p0 þ s0Þ�y/j dC: ð11Þ
The flow is defined on a two-dimensional domain X, bounded by the curve C. Each perturbed field is approx-
imated with a linear combination of the same basis functions:
u0h ¼
u0h
v0h

� �
¼

Pn
k¼1U k/kPn
k¼1V k/k

� �
; p0h ¼

Xm

k¼1

P k vk:
Once all the variables are represented in terms of the basis functions, the system of partial differential
equations reduces to simultaneous algebraic equations for the coefficients of the basis functions of all
fields and the growth rate r. The number of algebraic equations is N = 2n + m, where n is the number
of basis functions used to expand each component of the velocity perturbation and m is the number of
basis functions used to expand the pressure disturbance. In vector form, the set of algebraic equations
is represented by
RðcÞ ¼ 0;
where R is the column vector of weighted residual equations and c is the column vector of coefficients of the
finite element basis function with which the perturbation of velocity and pressure are represented:
R ¼ ½R1
mx;R

2
mx; . . . ;Rn

mx;R
1
my ;R

2
my ; . . . ;Rn

my ;R
1
c ;R

2
c ; . . . ;Rm

c �
T
;

c ¼ ½U 1;U 2; . . . ;Un; V 1; V 2; . . . ; V n; P 1; P 2; . . . ; P m�T:
Here, the algebraic equations resulting from the discretization process are ordered so that the first n equa-
tions are associated with the residuals from the horizontal component of the conservation of momentum,
the next n, with residuals from the vertical component, and the last m, with the residuals from the conser-
vation of mass. In the same way, the coefficients from the finite element expansion – the unknowns of the
problem – are ordered so that the n coefficients from the horizontal velocity component appear first, fol-
lowed by the n coefficients form the vertical component, at the end, the m coefficients from the pressure
expansion.

When this set of equations is expanded in Taylor series and truncated at order Oðc2Þ on the grounds that
the perturbation is infinitesimal, one obtains
oR

oc
c ¼ 0:
Notice that oR
oc

is the matrix of sensitivities of the weighted residuals with respect to the unknown coefficient of
the perturbations. For convenience, one writes
oR

oc
¼ �rMþ J;
where M, which multiplies the growth rate r, is called the mass matrix and J is the jacobian matrix. Thus, this
discretization of the differential equations of the perturbation fields give rise to the generalized, non-Hermitian
eigenproblem
Jc ¼ rMc: ð12Þ
The block structure of the mass and jacobian matrices can be made explicit by splitting the vector of resid-
ual equations, Eqs. (9)–(11), into a transient contribution Rt and a steady-state contribution Rs, i.e.
R ” rRt + Rs:
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3. Elimination of the eigenvalues at infinity

The linear stability analysis then leads to a generalized eigenproblem (12). The mass matrix M is block diag-
onal and singular because the continuity equation for incompressible liquids does not have a time derivative
term. Thus, the number of (finite) eigenvalues of (12) is smaller than the dimension of the problem
N = 2n + m. The missing eigenvalues are commonly referred to as eigenvalues at infinity, because if the mass
matrix is slightly perturbed to remove the singularity, e.g. M* = M + �I, large eigenvalues appear in the
spectrum, and they grow unbounded as �! 0. Truncation errors in the numerical methods used to calculate
the spectrum of (12) may be interpreted as perturbations of the mass matrix and lead to the appearance of very
large eigenvalues, corresponding to the eigenvalues at infinity of the original problem. According to
Christodoulou [4], the number of eigenvalues at infinity is equal to the number of algebraic constraints
(equations with no time derivative) in the discrete eigenproblem, i.e. the number of rows identically equal
to zero in the mass matrix. In viscous flows of incompressible liquids, they would then count the number
of continuity residuals (number of degrees of freedom associated with the pressure field) plus the number
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of essential boundary conditions on the velocity field. As we shall see from our algorithm, there are a few
more, being equal to twice the number of residual equations associated with the mass conservation equations
(twice the number of degrees of freedom associated with the pressure field) plus the number of residuals asso-
ciated with the essential boundary conditions on velocity.

3.1. The algorithm

Following the ordering scheme explained before, both the mass and jacobian matrices are divided into
blocks. The values m and n indicate the dimension of each block: for example, [M11] is n · n:
ð13Þ
The eigenvalues r of the GEVP (12) are the roots of the determinant p(r) of the matrix A = J � rM,
p(r) = det(A). Said differently, we are interested in the values of r for which the homogeneous system
(J � rM)c = 0 has a non-trivial solution c. In particular, if one replaces both J and M by matrices eJ andfM, the GEVP eJd ¼ rfMd has the same (generalized) eigenvalues r as the original system if the corresponding
homogeneous system ðeJ � rfMÞd ¼ 0 has a non-trivial solution d. Convenient modifications are related to the
process of solving the homogeneous system above by a two-sided Gaussian elimination, in the sense that row
and column operations are allowed. More algebraically, we consider left and right multiplications of both J

and M by invertible matrices X and Y independent of r. Notice that we are not interested in the value of the
solutions c or d, but just in the existence of non-trivial ones.

As mentioned before, the b algebraic equations associated with the Dirichlet boundary conditions do not
have a time derivative, and the perturbed velocity field at these boundaries are identically zero. Such equa-
tions belong to the first two rows of blocks of J and M. The rows associated with these equations only have
a non-zero position, equal to 1, at diagonal entries of matrix J. Calling Jb, Mb the matrices after elimination
of the rows and columns related to these equations and unknowns, the dimension of Ab = Jb � rMb is
2n + m � b. The determinants pb(r) and p(r) are the same. It is convenient to redefine the block structure
of Ab as below:
ð14Þ
The jacobian matrices J as well as Jb are invertible in most situations. The exception is at turning points on the
solution path constructed as Reynolds number rises, i.e., for a given flow there are a isolated values of Rey-
nolds number at which the Jacobian matrix may become singular.

The blocks ðAb
13;A

b
23Þ

T and ðAb
31;A

b
32Þ are related, respectively, to the sensitivity of the momentum equations

to pressure and to the sensitivity of the continuity equation to velocity. They are independent of the growth
factor r (no contribution from the mass matrix) and Reynolds number Re. By construction, the jacobian
matrices J and Jb are simultaneously invertible and thus the last m rows and m columns of the matrix Ab

are linearly independent. Because the blocks ðAb
13;A

b
23Þ

T and ðAb
31;A

b
32Þ do not depend on the Reynolds num-

ber, their columns and rows are always linearly independent, irrespective of Re. Indeed, if this were not true,
the Jacobian matrix would have been singular for all values of Re.

Since the blocks ðAb
13;A

b
23Þ

T and ðAb
31;A

b
32Þ are linearly independent, the sub-matrices Ab

13 and Ab
31 are invert-

ible or there must be column and row permutations that make them non-singular. Let Ab
perm be the matrix
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obtained from permuting Ab in such a way. These blocks now may be used by a two-sided Gaussian elimina-
tion to set to zero the blocks in positions Ab

23 and Ab
32. More precisely, define
ð15Þ
where
ð16Þ
Since the matrices T‘ and Tr are triangular with diagonal entries equal to one, their determinants are equal to
one. The polynomial p1(r) of the transformed matrix eA is equal to the original polynomial, up to an irrelevant
sign:
p1ðrÞ ¼ detðeAÞ ¼ detðT‘Þ detðAb
permÞ detðTrÞ ¼ detðAb

permÞ ¼ �pðrÞ: ð17Þ
Again, the multiplication of Ab
perm by T‘ and Tr does not change the spectrum of the original problem. Also, the

determinant of the transformed matrix eA may be computed by permuting rows, so as to interchange the bot-
tom and top row blocks. Indeed, this gives rise to a block triangular matrix, whose determinant, up to sign,

equals detðeA13Þ detðeA31Þ detðeA22ðrÞÞ. The upshot is that p(r), the original polynomial, and detðeA22ðrÞÞ have
the same roots.

Generically, the matrix eA22 ¼ �rfM22 þ eJ22 is non-singular, in the sense that fM22 is invertible. Thus the
number of roots of its characteristic polynomial is 2n � m � b, the number of finite eigenvalues of the original
problem. Consequently, the number of eigenvalues at infinity of the original problem is twice the number of
degrees of freedom associated with the mass conservation equation plus the eigenvalues at infinity that come
from essential boundary conditions, i.e. 2m + b.

Now, the finite portion of the spectrum of the GEVP (12) can be calculated by solving the smaller GEVP:
ð�r fM22 þ eJ22Þc2 ¼ 0; ð18Þ

where the (2n � m � b) · (2n � m � b) matrices fM22 and eJ22 are given by
eJ22 ¼ ð�Jb
23Jb

13

�1
Jb

11 þ Jb
21Þð�Jb

31

�1
Jb

32Þ þ ð�Jb
23Jb

13

�1ÞJb
12 þ Jb

22; ð19Þ

fM22 ¼ ð�Jb
23Jb

13

�1
Mb

11 þMb
21Þð�Jb

31

�1
Jb

32Þ þ ð�Jb
23Jb

13

�1ÞMb
12 þMb

22: ð20Þ
Since fM22 is invertible, there is an equivalent simple eigenvalue problem (EVP),
fM�1
22
eJ22|fflfflfflffl{zfflfflfflffl}

D

c2 ¼ rc2: ð21Þ
As stated, the EVP requires the inversion of two m · m matrices and one (2n � m � b) · (2n � m � b) matrix.
Clearly, for many iterative procedures related to the computation of eigenvalues, inversions may be replaced
by solving linear systems which special structure.

The generalized eigenvectors c of the original problem (J � rM)c = 0 are computed as a function of the
eigenvectors c2 of the transformed smaller problem ð�r fM22 þ eJ22Þc2 ¼ 0, as shown next.

The first step of the proposed method was to eliminate the rows and columns associated with the Dirichlet
boundary conditions. The corresponding eigenvector cb of the problem Abcb = 0 is simply the original eigen-
vector without the zero entries associated with the Dirichlet boundary conditions. The eigenvector cb

perm of the
permuted matrix Ab

perm differs from cb by the column permutation performed in matrix Ab.
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Since eA ¼ T‘A
b
permTr with det(T‘) = 1 and det(Tr) = 1, the eigenproblem can be re-written as
T‘A
b
perm Trd|{z}

cb
perm

¼ 0) eAd ¼ 0; ð22Þ
where d � T�1
r cb

perm is the generalized eigenvector of eA. It is convenient to split it respecting the block structure
of eA:
d ¼
d1

d2

d3

0
B@

1
CA

m

2n �m �b

m

The system (22) may be written in terms of the blocks of eA and d:
Ab
11d1 þ eA12d2 þ Ab

13d3 ¼ 0;eA21d1 þ eA22d2 ¼ 0;

Ab
31d1 ¼ 0:

8><
>:
The matrix Ab
31 is invertible so the only solution for Ab

31 d1 ¼ 0 is the trivial solution d1 = 0. The second equa-
tion becomes eA22d2 ¼ 0. Notice that this equation corresponds to the reduced generalized eigenproblem (18).

The non-trivial solution is the eigenvector c2. The block d3 can be easily obtained: d3 ¼ �Ab�1

13
eA12c2.

Thus, the eigenvector of the large eigenproblem after the left and right matrix multiplication d is written in
terms of the eigenvector of the reduced eigenproblem c2 as
d ¼
0

c2

d3 ¼ �Ab�1

13
eA12c2

0
B@

1
CA: ð23Þ
From this equation, one computes the generalized eigenvectors associated with the previous modifications of
the original problem, obtaining c without difficulty.
4. An example: stability of plane Couette flow

4.1. Perturbed equations and solution method

The method described in the previous section is applied to study the stability of plane Couette flow. The
flow geometry and boundary conditions are shown in Fig. 1: liquid flows between two parallel plates located
at y = ±1 that are moving with velocity U = ± 1. The steady-state solution is
v0 ¼ ðy; 0; 0Þ and p0 ¼ 0: ð24Þ
>

<

Y = 0

Y =1

Y = -1

U = 1

U = -1

X

Y

Fig. 1. Configuration of plane Couette flow.
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The base flow is perturbed as
vðx; y; tÞ ¼ v0ðyÞ þ � v0ðyÞeiaxþrt and pðx; y; tÞ ¼ p0ðyÞ þ � p0ðyÞeiaxþrt: ð25Þ

For simplicity, only two-dimensional perturbations were considered. Let a be the wavelength of the periodic
perturbation along the flow direction. Substituting the perturbed fields into the transient conservations equa-
tions and neglecting the higher order terms (Oð�2Þ), a system of differential equations on the perturbed vari-
ables, e.g. v 0 = (u 0,v 0) and p 0, is obtained:
iau0 þ dv0

dy
¼ 0; ð26Þ

Re½ðrþ iayÞu0 þ v0� ¼ �iap0 þ d2u0

dy2
� a2u0; ð27Þ

Re½ðrþ iayÞv0� ¼ � dp0

dy
þ d2v0

dy2
� a2v0: ð28Þ
The pressure field may be eliminated from the equations, yielding a fourth-order Orr-Sommerfeld operator for
the amplitude of the perturbed stream function.

It is common practice to analyze the stability of Couette flow by discretizing the Orr-Sommerfeld operator
using spectral methods. An example of such procedure is presented by Dongarra et al. [6], that used Cheby-
shev-s method to discretize the Orr-Sommerfeld equation and the QZ method to solve the generalized eigen-
value problem. The authors acknowledged that the singularity of the mass matrix M might account for the
appearance of eigenvalues at infinity.

Here, instead, the stability analysis is formulated in terms of the primitive variables, i.e. velocity and pres-
sure, as in Eqs. (26)–(28). At a fixed wave number a, the amplitudes of the perturbations u 0, v 0 and p 0, and their
growth rate r are found by applying Galerkin’s weighted residual method to Eqs. (26)–(28), as explained in the
previous section. The velocity perturbations are expanded using piecewise Lagrangian quadratic polynomials
/j and the pressure perturbation are approximated using piecewise linear discontinuous polynomials vj.

The resulting mass and jacobian matrices have the same structure presented in (13). The entries of each
block are given by
M11 ¼ �
oRtj

mx

oU k
¼ �

Z 1

�1

Re/j/kdy;

M22 ¼ �
oRtj

my

oV k
¼ �

Z 1

�1

Re/j/kdy;

J11 ¼
oRsj

mx

oU k
¼
Z 1

�1

ðReiay þ a2Þ/j/k þ
d/j

dy
d/k

dy

� �
dy;

J12 ¼
oRsj

mx

oV k
¼
Z 1

�1

Re/j/k dy;

J13 ¼
oRsj

mx

oP k
¼
Z 1

�1

iavj/k dy;

J22 ¼
oRsj

my

oV k
¼
Z 1

�1

ðReiay þ a2Þ/j/k þ
d/j

dy
d/k

dy

� �
dy;

J23 ¼
oRsj

my

oP k
¼ �

Z 1

�1

vj
d/k

dy
dy;

J31 ¼
oRsj

c

oU k
¼
Z 1

�1

ia/jvk dy;

J32 ¼
oRsj

c

oV k
¼
Z 1

�1

d/j

dy
vk dy;
all omitted block entries are identically zero. At each row corresponding to the Dirichlet boundary condition
applied at both walls, e.g. u 0 = 0 and v 0 = 0, all the entries of the mass and jacobian matrices are equal to zero,
except the diagonal entry of the jacobian matrix, which is equal to one.
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Elements# nodes # degrees of freedom#

Fig. 2. Numbering scheme for 3 elements, 7 nodes and 20 degrees of freedom: 7 for the x-velocity U, 7 for the y-velocity V and 6 for the
pressure P. The 20 related coefficients C1, . . ., C20 are inserted in the matrix as follows: first u0h ¼

P7
k¼1Uk/k , then v0h ¼

P7
k¼1V k/k and

finally p0h ¼
P6

k¼1P k vk .
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4.2. Filtering the eigenvalues at infinity

As an illustration, we consider first only three finite elements. For this discretization level, the number of
finite element coefficients (number of unknowns) used to expand each component of the velocity perturbation
is n = 7, and the number of coefficients to expand the pressure perturbation is m = 6. The total number of
degrees of freedom of the problem is N = 2n + m = 20. The scheme used to number the elements, nodes
and degrees of freedom of the problem is illustrated in Fig. 2.

The structure of the non-zero entries of the matrix A = �rM + J is shown in Fig. 3a. The only entries in
rows 1, 6, 8 and 13 (the ones associated with the Dirichlet boundary conditions) different than zero are the
diagonal elements, that are equal to one. As explained before, the first step is to remove the rows and columns
associated with the essential boundary conditions. The structure of the resulting matrix, Ab is shown in
Fig. 3b. The next step is to eliminate the blocks Ab

32 and Ab
23 using the transformation defined in Eq. (16).

In order to construct the transformation matrices T‘ and Tr, the inverse of the blocks Ab
13 and Ab

31 need to
be evaluated. Two different approaches may be used at this step. The first is to simply evaluate the inverses
of each block. The alternative approach is to perform column and row permutations in the rectangular matri-
ces ½Ab

31;A
b
32� and ½Ab

13;A
b
23�

T in order to reduce the bandwith of each block and minimize the round-off error
that comes with the inversion of the matrices.

In a one-dimensional problem like this one, column and row permutations give rise to the matrix structure
shown in Fig. 3c: the blocks Ab

perm;13 and Ab
perm;31 become diagonal matrices, with trivial inverses. The structure

of the resulting transformed matrix eA ¼ T‘A
bTr is shown in Fig. 4. All the (finite) information on the spec-

trum of the original problem is contained in the (2n � m � b) · (2n � m � b) central block in the transformed
matrix (4 · 4 in this particular case), indicated in Fig. 4.

4.3. Results

We compare the spectrum of the plane Couette flow predicted by our method with the one presented by [2].
The analysis was performed at Re = 500 and a = 1.5. In order to verify the independence of the eigenvalues to
the number of elements in the discretization, the spectrum of the original generalized eigenproblem Jc = rMc

was solved using the QZ method for two different meshes of 100 and 200 elements. The relative deviation
ðjri

100 � ri
200j=jri

200jÞ between the 35 leading eigenvalues (i.e., the finite numbers with largest real part) are
shown in Fig. 6. In the range �6:5 < RðrÞ < 0, where the real part of these 35 leading eigenvalues are located,
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the maximal deviation is less than Oð10�3Þ. Thus, a mesh of 100 elements was considered to be fine enough to
predict the leading eigenvalues of the problem. Moreover, the deviation decrease for eigenvalues closer to the
imaginary axis, reaching Oð10�7Þ.

The eigenvalues found by our method are plotted together with Bottaro’s spectrum in Fig. 5. A more pre-
cise comparison, with several significant digits, is not possible since Bottaro’s results were obtained directly
from a graph in his work.
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Fig. 4. Structure of the final transformed matrix eA. The (finite) spectrum of the original problem is equals the spectrum of the
(2n � m � b) · (2n � m � b) block.
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With a mesh of 100 elements, the number of degrees of freedom of the problem (dimension of the original
generalized eigenproblem) is N = 602, with n = 201, m = 200 and b = 4. After using the transformations which
eliminate the eigenvalues at infinity of the problem, the reduced matrix ~A22 has dimension 2n � m � b = 198.
Typically, OðnÞ ’ OðmÞ, so the dimension of the original GEVP is N ¼ 2nþ m ’ Oð3nÞ. The dimension of the
reduced EVP is 2n� m� b ’ OðnÞ. Since the number of essential boundary conditions is much smaller than
the number of degrees of freedom associated with each velocity component, i.e. b < < n, the reduced EVP is
approximately 1/3 of the size of the original problem. Notice that there was no effort to try to make use of the
intrinsic symmetric in the flow geometry, which might reduce the order of the problems further.

The reduced EVP, Eq. (21), and also the GEVP, Eq. (12), were solved by the LAPACK routine ZGEEV (for
non-Hermitian matrices) and, in the case of the GEVP, using QZ method. No special features of the matrices
were employed, so as not do distort comparisons between methods. As expected, the finite eigenvalues of the
EVP and of the GEVP coincide: their relative deviation is of the order of Oð10�7Þ. The modulus of the entries
of the eigenvector related to the critical eigenvalue rl = � 0.20934 + i0.86613 are shown in Fig. 7. Indeed, the
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method used to eliminate the eigenvalues at infinity was able to accurately predict the eigenpair of the problem
essentially to 7 digits.



Table 1
CPU time, in seconds, to compute the eigenvalues: (a) solving the original GEVP by QZ method and (b) solving the reduced EVP using
LAPACK routine

# ele Nfull = 2n + m Ntransf = 2n � m � b GEVP time EVP time tGEVP

tEVP

50 302 98 3.57 0.27 13.22
100 602 198 28.70 0.891 32.21
150 902 298 98.25 3.36 29.3
200 1202 398 242.84 7.89 30.78
300 1802 598 836.86 27.67 30.24
350 2102 698 1435.51 40.734 35.27
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The method reduces significantly the time of computation. Table 1 presents the CPU times, in seconds,
required to solve the original GEVP and the reduced EVP, for different meshes. The latter includes the time
to compute all the operations necessary to obtain the reduced EVP, which, as mentioned before, consists of
inverting two m · m matrices, one (2n � m � b) · (2n � m � b) matrix, and some matrix–matrix products. In
the one-dimensional problem used as an example in this text, simple row and column permutations transform
some off-diagonal sub-blocks into diagonal matrices, trivializing the inverses of the m · m blocks Ab

13 and Ab
31.

It turns out that the inversion of such blocks before permutations is so simple that the CPU time between both
alternatives does not vary substantially. However, the computation of the eigenvalues around RðrÞ � �1 dif-
fer sharply in accuracy for both approaches, as shown in Fig. 8. The proposed method is faster by a factor of
approximately 30 for Nfull > 600. The programming makes use of the sparsity of the matrices. All calculations
were performed on a machine with 1.00 GB of RAM and 789 GHz AMD Turion(tm) 64 Mobile processor
using MatLab, version 6.5.

5. Final remarks

We present a new method to eliminate the eigenvalues at infinity of the generalized eigenvalue problem that
arises from linear stability analysis of incompressible flows. The algorithm transforms the original generalized
eigenproblem (GEVP) into an equivalent strict eigenvalue problem (EVP), whose dimension is approximately
1/3 of the original problem. The eigenvalues of the transformed EVP correspond exactly to the finite eigen-
values of the original GEVP. The eigenvectors of the original problem can also be found as a function of
the eigenvectors of the reduced problem.
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The main advantages of the proposed methods are:

� Eliminates the eigenvalues at infinity without the need of mapping or preconditioning techniques, which are
computationally expensive.
� Reduces the size of the eigenproblem without loss of accuracy. Previous methods were restricted to creeping

flow analysis (zero Reynolds number) or penalty methods.
� The transformed and smaller mass matrix is non-singular and, consequently, the original GEVP can be eas-

ily re-written as an EVP.
� No information about the eigenspaces is lost since the eigenvalues and also the eigenvectors can be found in

the reduced problem.

These features bring significant reduction of the computational cost required to evaluate the eigenspectrum
of an incompressible flow. In the example presented here, the proposed method was faster by a factor of
approximately 30 when compared to the solution of the original GEVP.

The analysis also shows that the number of eigenvalues at infinity of a incompressible viscous flow is actu-
ally larger than that proposed by Christodoulou and Scriven [4]; it is equal to twice the number of residual
equations associated with the mass conservation equations (twice the number of degrees of freedom associated
with the pressure field) plus the number of residuals associated with essential boundary conditions on velocity.

Although the formulation and the example used in this work was based on the linear stability analysis of an
incompressible flow, this procedure may be also used to any generalized eigenproblem that comes from linear
stability analysis with algebraic restrictions. We intend to expand on these issues in forthcoming publications.
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